Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717849

RESUMO

The main obstacle for the electrocatalytic production of "green hydrogen" is finding suitable electrocatalysts which operate highly efficiently over extended periods of time. The topic of this study is the oxygen evolution reaction (OER), one of the half-reactions of water splitting. It is complex and has intricate kinetics, which impairs the reaction efficiency. Transition metal oxides have shown potential as electrocatalysts for this reaction, but much remains unknown about the atomic scale processes. We have investigated structure-composition-reactivity correlations for Co3O4, CoFe2O4, and Fe3O4 epitaxial thin-film electrocatalysts exposing either the (001) or (111) surface facets. We found that for Co3O4, the (001) facet is more reactive, while for the other oxides, the (111) facet is more active. A Tafel-like evaluation reveals systematically smaller "Tafel" slopes for the (001) facets. Furthermore, the slopes are smaller for the iron-containing films. Additionally, we found that the oxyhydroxide skin layer which forms under OER reaction conditions is thicker on the cobalt oxides than on the other oxides, which we attribute to either a different density of surface defects or to iron hindering the growth of the skin layers. All studied skin layers were thinner than 1 nm.

2.
Nat Commun ; 15(1): 3986, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734726

RESUMO

Pulsed CO2 electroreduction (CO2RR) has recently emerged as a facile way to in situ tune the product selectivity, in particular toward ethanol, without re-designing the catalytic system. However, in-depth mechanistic understanding requires comprehensive operando time-resolved studies to identify the kinetics and dynamics of the electrocatalytic interface. Here, we track the adsorbates and the catalyst state of pre-reduced Cu2O nanocubes ( ~ 30 nm) during pulsed CO2RR using sub-second time-resolved operando Raman spectroscopy. By screening a variety of product-steering pulse length conditions, we unravel the critical role of co-adsorbed OH and CO on the Cu surface next to the oxidative formation of Cu-Oad or CuOx/(OH)y species, impacting the kinetics of CO adsorption and boosting the ethanol selectivity. However, a too low OHad coverage following the formation of bulk-like Cu2O induces a significant increase in the C1 selectivity, while a too high OHad coverage poisons the surface for C-C coupling. Thus, we unveil the importance of co-adsorbed OH on the alcohol formation under CO2RR conditions and thereby, pave the way for improved catalyst design and operating conditions.

3.
ACS Nano ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38741386

RESUMO

The activity, selectivity, and lifetime of nanocatalysts critically depend on parameters such as their morphology, support, chemical composition, and oxidation state. Thus, correlating these parameters with their final catalytic properties is essential. However, heterogeneity across nanoparticles (NPs) is generally expected. Moreover, their nature can also change during catalytic reactions. Therefore, investigating these catalysts in situ at the single-particle level provides insights into how these tunable parameters affect their efficiency. To unravel this question, we applied spectro-microscopy to investigate the thermal reduction of SiO2-supported copper oxide NPs in ultrahigh vacuum. Copper was selected since its oxidation state and morphological transformations strongly impact the product selectivity of many catalytic reactions. Here, the evolution of the NPs' chemical state was monitored in situ during annealing and correlated with their morphology in situ. A reaction front was observed during the reduction of CuO to Cu2O. From the temperature dependence of this front, the activation energy was extracted. Two parameters were found to strongly influence the NP reduction: the initial nanoparticle size and the chemical state of the SiO2. substrate. The CuOx reduction was found to be completed first on smaller NPs and was also favored over partially reduced SiOx regions that resulted from X-ray beam irradiation. This methodology with single-particle level spectro-microscopy resolution provides a way of isolating the influence of diverse morphologic, electronic, and chemical influences on a chemical reaction. The knowledge gained is crucial for the future design of more complex multimetallic catalytic systems.

4.
J Am Chem Soc ; 146(12): 8677-8687, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38472104

RESUMO

The nature of the Cu-Zn interaction and especially the role of Zn in Cu/ZnO catalysts used for methanol synthesis from CO2 hydrogenation are still debated. Migration of Zn onto the Cu surface during reaction results in a Cu-ZnO interface, which is crucial for the catalytic activity. However, whether a Cu-Zn alloy or a Cu-ZnO structure is formed and the transformation of this interface under working conditions demand further investigation. Here, ZnO/Cu2O core-shell cubic nanoparticles with various ZnO shell thicknesses, supported on SiO2 or ZrO2 were prepared to create an intimate contact between Cu and ZnO. The evolution of the catalyst's structure and composition during and after the CO2 hydrogenation reaction were investigated by means of operando spectroscopy, diffraction, and ex situ microscopy methods. The Zn loading has a direct effect on the oxidation state of Zn, which, in turn, affects the catalytic performance. High Zn loadings, resulting in a stable ZnO catalyst shell, lead to increased methanol production when compared to Zn-free particles. Low Zn loadings, in contrast, leading to the presence of metallic Zn species during reaction, showed no significant improvement over the bare Cu particles. Therefore, our work highlights that there is a minimum content of Zn (or optimum ZnO shell thickness) needed to activate the Cu catalyst. Furthermore, in order to minimize catalyst deactivation, the Zn species must be present as ZnOx and not metallic Zn or Cu-Zn alloy, which is undesirably formed during the reaction when the precatalyst ZnO overlayer is too thin.

5.
Energy Environ Sci ; 17(5): 2046-2058, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38449571

RESUMO

The production of green hydrogen through alkaline water electrolysis is the key technology for the future carbon-neutral industry. Nanocrystalline Co3O4 catalysts are highly promising electrocatalysts for the oxygen evolution reaction and their activity strongly benefits from Fe surface decoration. However, limited knowledge of decisive catalyst motifs at the atomic level during oxygen evolution prevents their knowledge-driven optimization. Here, we employ a variety of operando spectroscopic methods to unveil how Fe decoration increases the catalytic activity of Co3O4 nanocatalysts as well as steer the (near-surface) active state formation. Our study shows a link of the termination-dependent Fe decoration to the activity enhancement and a significantly stronger Co3O4 near-surface (structural) adaptation under the reaction conditions. The near-surface Fe- and Co-O species accumulate an oxidative charge and undergo a reversible bond contraction during the catalytic process. Moreover, our work demonstrates the importance of low coordination surface sites on the Co3O4 host to ensure an efficient Fe-induced activity enhancement, providing another puzzle piece to facilitate optimized catalyst design.

6.
ACS Appl Mater Interfaces ; 16(9): 11552-11560, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38408369

RESUMO

Bismuth is a catalyst material that selectively produces formate during the electrochemical reduction of CO2. While different synthesis strategies have been employed to create electrocatalysts with better performance, the restructuring of bismuth precatalysts during the reaction has also been previously reported. The mechanism behind the change has, however, remained unclear. Here, we show that Bi2O3 nanoparticles supported on Vulcan carbon intrinsically transform into stellated nanosheet aggregates upon exposure to an electrolyte. Liquid cell transmission electron microscopy observations first revealed the gradual restructuring of the nanoparticles into nanosheets in the presence of 0.1 M KHCO3 without an applied potential. Our experiments also associated the restructuring with solubility of bismuth in the electrolyte. While the consequent agglomerates were stable under moderate negative potentials (-0.3 VRHE), they dissolved over time at larger negative potentials (-0.4 and -0.5 VRHE). Operando Raman spectra collected during the reaction showed that under an applied potential, the oxide particles reduced to metallic bismuth, thereby confirming the metal as the working phase for producing formate. These results inform us about the working morphology of these electrocatalysts and their formation and degradation mechanisms.

7.
Adv Mater ; 36(4): e2307809, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37994692

RESUMO

Electrochemical CO2 reduction (CO2 RR) is a rising technology, aiming to reduce the energy sector dependence on fossil fuels and to produce carbon-neutral raw materials. Metal-nitrogen-doped carbons (M-N-C) are emerging, cost-effective catalysts for this reaction; however, their long-term stability is a major issue. To overcome this, understanding their structural evolution is crucial, requiring systematic in-depth operando studies. Here a series of M-N-C catalysts (M = Fe, Sn, Cu, Co, Ni, Zn) is investigated using operando X-ray absorption spectroscopy. It is found that the Fe-N-C and Sn-N-C are prone to oxide clusters formation even before CO2 RR. In contrast, the respective metal cations are singly dispersed in the as-prepared Cu-N-C, Co-N-C, Ni-N-C, and (Zn)-N-C. During CO2 RR, metallic clusters/nanoparticles reversibly formed in all catalysts, except for the Ni-N-C. This phenomenon, previously observed only in Cu-N-C, thus is ubiquitous in M-N-C catalysts. The competition between M-O and M-N interactions is an important factor determining the mobility of metal species in M-N-C. Specifically, the strong interaction between the Ni centers and the N-functional groups of the carbon support results in higher stability of the Ni single-sites, leading to the excellent performance of Ni-N-C in the CO2 to CO conversion, in comparison to other transition metals.

8.
Chem Rev ; 123(23): 13374-13418, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-37967448

RESUMO

Heterogeneous catalysis in thermal gas-phase and electrochemical liquid-phase chemical conversion plays an important role in our modern energy landscape. However, many of the structural features that drive efficient chemical energy conversion are still unknown. These features are, in general, highly distinct on the local scale and lack translational symmetry, and thus, they are difficult to capture without the required spatial and temporal resolution. Correlating these structures to their function will, conversely, allow us to disentangle irrelevant and relevant features, explore the entanglement of different local structures, and provide us with the necessary understanding to tailor novel catalyst systems with improved productivity. This critical review provides a summary of the still immature field of operando electron microscopy for thermal gas-phase and electrochemical liquid-phase reactions. It focuses on the complexity of investigating catalytic reactions and catalysts, progress in the field, and analysis. The forthcoming advances are discussed in view of correlative techniques, artificial intelligence in analysis, and novel reactor designs.

9.
J Phys Chem C Nanomater Interfaces ; 127(42): 20700-20709, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37908742

RESUMO

Alloys of gallium with transition metals have recently received considerable attention for their applications in microelectronics and catalysis. Here, we investigated the initial stages of the Ga-Cu alloy formation on Cu(111) and Cu(001) surfaces using scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), and low energy electron diffraction (LEED). The results show that Ga atoms deposited using physical vapor deposition readily intermix with the Cu surface, leading to a random distribution of the Ga and Cu atoms within the surface layer, on both terraces and monolayer-thick islands formed thereon. However, as the Ga coverage increases, several ordered structures are formed. The (√3×√3)R30° structure is found to be thermodynamically most stable on Cu(111). This structure remains after vacuum annealing at 600 K, independent of the initial Ga coverage (varied between 0.5 and 3 monolayers), indicating a self-limited growth of the Ga-Cu alloy layer, with the rest of the Ga atoms migrating into the Cu crystal. For Ga deposited on Cu(001), we observed a (1 × 5)-reconstructed surface, which has never been observed for surface alloys on Cu(001). The experimental findings were rationalized on the basis of density functional theory (DFT) calculations, which provided structural models for the most stable surface Ga-Cu alloys on Cu(111) and Cu(001). The study sheds light on the complex interaction of Ga with transition metal surfaces and the interfaces formed thereon that will aid in a better understanding of surface alloying and chemical reactions on the Ga-based alloys.

10.
J Am Chem Soc ; 145(39): 21465-21474, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37726200

RESUMO

The activity of Ni (hydr)oxides for the electrochemical evolution of oxygen (OER), a key component of the overall water splitting reaction, is known to be greatly enhanced by the incorporation of Fe. However, a complete understanding of the role of cationic Fe species and the nature of the catalyst surface under reaction conditions remains unclear. Here, using a combination of electrochemical cell and conventional transmission electron microscopy, we show how the surface of NiO electrocatalysts, with initially well-defined surface facets, restructures under applied potential and forms an active NiFe layered double (oxy)hydroxide (NiFe-LDH) when Fe3+ ions are present in the electrolyte. Continued OER under these conditions, however, leads to the creation of additional FeOx aggregates. Electrochemically, the NiFe-LDH formation correlates with a lower onset potential toward the OER, whereas the formation of the FeOx aggregates is accompanied by a gradual decrease in the OER activity. Complementary insight into the catalyst near-surface composition, structure, and chemical state is further extracted using X-ray photoelectron spectroscopy, operando Raman spectroscopy, and operando X-ray absorption spectroscopy together with measurements of Fe uptake by the electrocatalysts using time-resolved inductively coupled plasma mass spectrometry. Notably, we identified that the catalytic deactivation under stationary conditions is linked to the degradation of in situ-created NiFe-LDH. These insights exemplify the complexity of the active state formation and show how its structural and morphological evolution under different applied potentials can be directly linked to the catalyst activation and degradation.

11.
J Am Chem Soc ; 145(31): 17351-17366, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37524049

RESUMO

Transition metal-nitrogen-doped carbons (TMNCs) are a promising class of catalysts for the CO2 electrochemical reduction reaction. In particular, high CO2-to-CO conversion activities and selectivities were demonstrated for Ni-based TMNCs. Nonetheless, open questions remain about the nature, stability, and evolution of the Ni active sites during the reaction. In this work, we address this issue by combining operando X-ray absorption spectroscopy with advanced data analysis. In particular, we show that the combination of unsupervised and supervised machine learning approaches is able to decipher the X-ray absorption near edge structure (XANES) of the TMNCs, disentangling the contributions of different metal sites coexisting in the working TMNC catalyst. Moreover, quantitative structural information about the local environment of active species, including their interaction with adsorbates, has been obtained, shedding light on the complex dynamic mechanism of the CO2 electroreduction.

12.
ACS Appl Mater Interfaces ; 15(25): 30052-30059, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37318204

RESUMO

Catalyst degradation and product selectivity changes are two of the key challenges in the electrochemical reduction of CO2 on copper electrodes. Yet, these aspects are often overlooked. Here, we combine in situ X-ray spectroscopy, in situ electron microscopy, and ex situ characterization techniques to follow the long-term evolution of the catalyst morphology, electronic structure, surface composition, activity, and product selectivity of Cu nanosized crystals during the CO2 reduction reaction. We found no changes in the electronic structure of the electrode under cathodic potentiostatic control over time, nor was there any build-up of contaminants. In contrast, the electrode morphology is modified by prolonged CO2 electroreduction, which transforms the initially faceted Cu particles into a rough/rounded structure. In conjunction with these morphological changes, the current increases and the selectivity changes from value-added hydrocarbons to less valuable side reaction products, i.e., hydrogen and CO. Hence, our results suggest that the stabilization of a faceted Cu morphology is pivotal for ensuring optimal long-term performance in the selective reduction of CO2 into hydrocarbons and oxygenated products.

13.
J Am Chem Soc ; 145(7): 4065-4080, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36762901

RESUMO

Bimetallic transition-metal oxides, such as spinel-like CoxFe3-xO4 materials, are known as attractive catalysts for the oxygen evolution reaction (OER) in alkaline electrolytes. Nonetheless, unveiling the real active species and active states in these catalysts remains a challenge. The coexistence of metal ions in different chemical states and in different chemical environments, including disordered X-ray amorphous phases that all evolve under reaction conditions, hinders the application of common operando techniques. Here, we address this issue by relying on operando quick X-ray absorption fine structure spectroscopy, coupled with unsupervised and supervised machine learning methods. We use principal component analysis to understand the subtle changes in the X-ray absorption near-edge structure spectra and develop an artificial neural network to decipher the extended X-ray absorption fine structure spectra. This allows us to separately track the evolution of tetrahedrally and octahedrally coordinated species and to disentangle the chemical changes and several phase transitions taking place in CoxFe3-xO4 catalysts and on their active surface, related to the conversion of disordered oxides into spinel-like structures, transformation of spinels into active oxyhydroxides, and changes in the degree of spinel inversion in the course of the activation treatment and under OER conditions. By correlating the revealed structural changes with the distinct catalytic activity for a series of CoxFe3-xO4 samples, we elucidate the active species and OER mechanism.

14.
J Am Chem Soc ; 145(5): 3016-3030, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36716273

RESUMO

The hydrogenation of CO2 to methanol over Cu/ZnO-based catalysts is highly sensitive to the surface composition and catalyst structure. Thus, its optimization requires a deep understanding of the influence of the pre-catalyst structure on its evolution under realistic reaction conditions, including the formation and stabilization of the most active sites. Here, the role of the pre-catalyst shape (cubic vs spherical) in the activity and selectivity of ZnO-supported Cu nanoparticles was investigated during methanol synthesis. A combination of ex situ, in situ, and operando microscopy, spectroscopy, and diffraction methods revealed drastic changes in the morphology and composition of the shaped pre-catalysts under reaction conditions. In particular, the rounding of the cubes and partial loss of the (100) facets were observed, although such motifs remained in smaller domains. Nonetheless, the initial pre-catalyst structure was found to strongly affect its subsequent transformation in the course of the CO2 hydrogenation reaction and activity/selectivity trends. In particular, the cubic Cu particles displayed an increased activity for methanol production, although at the cost of a slightly reduced selectivity when compared to similarly sized spherical particles. These findings were rationalized with the help of density functional theory calculations.

15.
ACS Catal ; 12(19): 11974-11983, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36249872

RESUMO

Spatio-temporal nonuniformities in H2 oxidation on individual Rh(h k l) domains of a polycrystalline Rh foil were studied in the 10-6 mbar pressure range by photoemission electron microscopy (PEEM), X-ray photoemission electron microscopy (XPEEM), and low-energy electron microscopy (LEEM). The latter two were used for in situ correlative microscopy to zoom in with significantly higher lateral resolution, allowing detection of an unusual island-mediated oxygen front propagation during kinetic transitions. The origin of the island-mediated front propagation was rationalized by model calculations based on a hybrid approach of microkinetic modeling and Monte Carlo simulations.

16.
J Am Chem Soc ; 144(36): 16267-16271, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36049156

RESUMO

Tuning the properties of oxide surfaces through the adsorption of designed ligands is highly desirable for several applications, such as catalysis. N-Heterocyclic carbenes (NHCs) have been successfully employed as ligands for the modification of metallic surfaces. On the other hand, their potential as modifiers of ubiquitous oxide surfaces still needs to be developed. Here we show that a model NHC binds covalently to a copper oxide surface under UHV conditions. In particular, we report the first example of a covalent bond between NHCs and oxygen atoms from the oxide layer. This study demonstrates that NHC can also act as a strong anchor on oxide surfaces.

17.
Catal Sci Technol ; 12(9): 3028-3043, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35662799

RESUMO

Copper-based catalysts are established catalytic systems for the electrocatalytic CO2 reduction reaction (CO2RR), where the greenhouse gas CO2 is converted into valuable industrial chemicals, such as energy-dense C2+ products, using energy from renewable sources. However, better control over the catalyst selectivity, especially at industrially relevant high current density conditions, is needed to expedite the economic viability of the CO2RR. For this purpose, bimetallic materials, where copper is combined with a secondary metal, comprise a promising and a highly tunable catalyst for the CO2RR. Nevertheless, the synergy between copper and the selected secondary metal species, the evolution of the bimetallic structural motifs under working conditions and the effect of the secondary metal on the kinetics of the Cu redox behavior require careful investigation. Here, we employ operando quick X-ray absorption fine structure (QXAFS) spectroscopy coupled with machine-learning based data analysis and surface-enhanced Raman spectroscopy (SERS) to investigate the time-dependent chemical and structural changes in catalysts derived from shape-selected ZnO/Cu2O nanocubes under CO2RR conditions at current densities up to -500 mA cm-2. We furthermore relate the catalyst transformations observed under working conditions to the catalytic activity and selectivity and correlate potential-dependent surface and subsurface processes. We report that the addition of Zn to a Cu-based catalyst has a crucial impact on the kinetics of subsurface processes, while redox processes of the Cu surface layer remain largely unaffected. Interestingly, the presence of Zn was found to contribute to the stabilization of cationic Cu(i) species, which is of catalytic relevance since Cu(0)/Cu(i) interfaces have been reported to be beneficial for efficient electrocatalytic CO2 conversion to complex multicarbon products. At the same time, we attribute the increase of the C2+ product selectivity to the formation of Cu-rich CuZn alloys in samples with low Zn content, while Zn-rich alloy phases result in an increased formation of CO paralleled by an increase of the parasitic hydrogen evolution reaction.

18.
J Am Chem Soc ; 144(27): 12007-12019, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35767719

RESUMO

Spinel-type catalysts are promising anode materials for the alkaline oxygen evolution reaction (OER), exhibiting low overpotentials and providing long-term stability. In this study, we compared two structurally equal Co2FeO4 spinels with nominally identical stoichiometry and substantially different OER activities. In particular, one of the samples, characterized by a metastable precatalyst state, was found to quickly achieve its steady-state optimum operation, while the other, which was initially closer to the ideal crystallographic spinel structure, never reached such a state and required 168 mV higher potential to achieve 1 mA/cm2. In addition, the enhanced OER activity was accompanied by a larger resistance to corrosion. More specifically, using various ex situ, quasi in situ, and operando methods, we could identify a correlation between the catalytic activity and compositional inhomogeneities resulting in an X-ray amorphous Co2+-rich minority phase linking the crystalline spinel domains in the as-prepared state. Operando X-ray absorption spectroscopy revealed that these Co2+-rich domains transform during OER to structurally different Co3+-rich domains. These domains appear to be crucial for enhancing OER kinetics while exhibiting distinctly different redox properties. Our work emphasizes the necessity of the operando methodology to gain fundamental insight into the activity-determining properties of OER catalysts and presents a promising catalyst concept in which a stable, crystalline structure hosts the disordered and active catalyst phase.

19.
Angew Chem Int Ed Engl ; 61(28): e202202561, 2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35502625

RESUMO

Single-atom (SA) catalysis presently receives much attention with its promise to decrease the cost of the active material while increasing the catalyst's performance. However, key details such as the exact location of SA species and their stability are often unclear due to a lack of atomic level information. Here, we show how vibrational spectra measured with surface action spectroscopy (SAS) and density functional theory (DFT) simulations can differentiate between different adatom binding sites and determine the location of Ni and Au single atoms on Fe3 O4 (001). We reveal that Ni and Au adatoms selectively bind to surface oxygen ions which are octahedrally coordinated to Fe ions. In addition, we find that the Ni adatoms can activate O2 to superoxide in contrast to the bare surface and Ni in subsurface positions. Overall, we unveil the advantages of combining SAS and DFT for improving the understanding of single-atom catalysts.

20.
Angew Chem Int Ed Engl ; 61(30): e202202127, 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35468246

RESUMO

N-Heterocyclic carbenes (NHCs) have superior properties as building blocks of self-assembled monolayers (SAMs). Understanding the influence of the substrate in the molecular arrangement is a fundamental step before employing these ligands in technological applications. Herein, we study the molecular arrangement of a model NHC on Cu(100) and Cu(111). While mostly disordered phases appear on Cu(100), on Cu(111) well-defined structures are formed, evolving from magic-number islands to molecular ribbons with coverage. This work presents the first example of magic-number islands formed by NHC assemblies on flat surfaces. Diffusion and commensurability are key factors explaining the observed arrangements. These results shed light on the molecule-substrate interaction and open the possibility of tuning nanopatterned structures based on NHC assemblies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...